7 Min Read

How to Build a Powerful RAG Knowledge Base Agent with Pydantic AI

Why You Should Read

Learn how Retrieval-Augmented Generation transforms AI reliability by cutting down hallucinations and errors. This guide explains how Pydantic AI's type-safe approach and flexible design help you build dependable AI agents. If you want a clear, practical roadmap to improve your AI systems, this guide is for you.

TL;DR

  • Reduce Errors: Use RAG to minimize hallucinations and inaccuracies.
  • Build Reliability: Leverage Pydantic AI's type-safe framework for robust agents.
  • Practical Steps: Follow clear instructions for setup and integration.
  • Future-Proof AI: Gain insights for scalable and maintainable solutions

Did you know that 79% of AI applications struggle with hallucinations and incorrect outputs? That's where Retrieval-Augmented Generation (RAG) comes in, revolutionizing how AI systems access and process information. By combining precise information retrieval with advanced language models, RAG dramatically reduces errors and enhances response accuracy.

We've spent months testing various RAG implementations, and Pydantic AI has emerged as a game-changing framework for building reliable knowledge base agents. Its type-safe approach and flexible architecture allow developers to create robust AI systems that deliver consistent, accurate responses while maintaining clean, maintainable code.

Introduction to RAG and Pydantic AI

Retrieval-Augmented Generation brings together information retrieval and language model generation to create more accurate AI responses. By pulling relevant information from trusted sources before generating responses, RAG significantly reduces incorrect outputs and fabricated facts in AI applications.

Pydantic AI offers a structured approach to building AI agents through its type-safe framework. The platform supports multiple language models, making it flexible for various business needs. Its dependency injection system helps create modular, maintainable code that's easier to test and update.

When implemented in business settings, RAG-based knowledge base agents improve accuracy and reliability. These agents can process information from company documents, databases, and APIs to provide precise answers based on verified data. The combination of RAG's retrieval capabilities with Pydantic AI's structured framework creates a powerful system for handling complex queries while maintaining data accuracy and response quality.

By integrating multiple knowledge sources and implementing proper context management, organizations can build reliable AI systems that answer questions based on actual data rather than approximations.

Setting Up the Development Environment

Before building your RAG knowledge base agent, you'll need to set up your development workspace. Start by installing Python 3.9 or later on your system. You'll also need PostgreSQL with the pgvector extension for vector storage, and Docker for containerization.

Create a new Python virtual environment to manage your project dependencies:

python -m venv venv
source venv/bin/activate  # On Windows, use: venv\\Scripts\\activate

Install the essential packages:

pip install pydantic-ai openai asyncpg pypdf python-docx beautifulsoup4

Set up your API credentials as environment variables to keep them secure:

export OPENAI_API_KEY=your_key_here

For Windows users, use the System Properties panel or PowerShell to set environment variables. Once you've completed these steps, your development environment will be ready for building AI-driven solutions with Pydantic AI.

Remember to create a .gitignore file to exclude your virtual environment directory and any sensitive configuration files from version control.

Installing Necessary Dependencies and Libraries

Setting up your project requires specific packages to handle different data types and processing needs. Start by installing Pydantic AI and its core requirements:

pip install pydantic-ai

For database operations, add asyncpg to work with PostgreSQL:

pip install asyncpg

Install document processing libraries to work with various file formats:

pip install pypdf python-docx beautifulsoup4

Create a requirements.txt file to track your dependencies:

pydantic-ai>=0.1.0
asyncpg>=0.28.0
pypdf>=3.0.0
python-docx>=0.8.11
beautifulsoup4>=4.12.0

For development and testing, add additional tools:

pip install pytest black isort mypy

These packages support PDF extraction, database connections, and data integration techniques for building a robust knowledge base system. Store your dependencies list in version control to maintain consistency across development environments.

Creating a Basic Pydantic AI Model Structure

Pydantic AI models use Python type annotations to create structured, maintainable AI applications. Here's a basic model structure:

from pydantic_ai import Agent, AIModel
from pydantic import BaseModel

class ResponseFormat(BaseModel):
    answer: str
    confidence: float
    sources: list[str]

class KnowledgeAgent(Agent):
    def __init__(self):
        super().__init__()
        self.model = AIModel(model="gpt-4")

    async def process_query(self, query: str) -> ResponseFormat:
        response = await self.model.generate(query)
        return ResponseFormat(**response)

The Agent class manages the workflow between language models and retrieval systems. It handles query processing, context management, and response generation through machine learning techniques. This approach catches errors early and makes responses consistent:

class QueryResult(BaseModel):
    content: str
    metadata: dict
    timestamp: datetime

This pattern creates reliable, testable code that works across different language model providers while maintaining data governance and type safety.

Integrating Multiple Knowledge Sources

Building a comprehensive knowledge base requires processing information from various data sources. Start by implementing data ingestion pipelines:

from pypdf import PdfReader
from bs4 import BeautifulSoup
import asyncpg

async def ingest_pdf(file_path: str) -> list[str]:
    reader = PdfReader(file_path)
    return [page.extract_text() for page in reader.pages]

async def ingest_database(connection_string: str, query: str) -> list[dict]:
    conn = await asyncpg.connect(connection_string)
    results = await conn.fetch(query)
    await conn.close()
    return results

Text preprocessing optimizes retrieval performance. Split content into manageable chunks:

def chunk_text(text: str, chunk_size: int = 512) -> list[str]:
    words = text.split()
    chunks = []
    current_chunk = []
    current_size = 0

    for word in words:
        if current_size + len(word) > chunk_size:
            chunks.append(" ".join(current_chunk))
            current_chunk = []
            current_size = 0
        current_chunk.append(word)
        current_size += len(word)

    return chunks

Add metadata tags to improve business intelligence and context retention:

def tag_content(chunk: str, source: str, timestamp: str) -> dict:
    return {
        "content": chunk,
        "source": source,
        "timestamp": timestamp,
        "type": determine_content_type(chunk)
    }

Implementing the Retrieval Component

Configure PostgreSQL with pgvector to store and search vector embeddings efficiently:

CREATE EXTENSION IF NOT EXISTS vector;
CREATE TABLE embeddings (
    id SERIAL PRIMARY KEY,
    content TEXT,
    embedding vector(1536),
    metadata JSONB
);

Generate embeddings using OpenAI's API or local models:

/

from openai import OpenAI

async def create_embedding(text: str) -> list[float]:
    client = OpenAI()
    response = await client.embeddings.create(
        input=text,
        model="text-embedding-ada-002"
    )
    return response.data[0].embedding

async def store_embedding(conn: asyncpg.Connection, content: str,
                         embedding: list[float], metadata: dict):
    query = """
    INSERT INTO embeddings (content, embedding, metadata)
    VALUES ($1, $2, $3)
    """
    await conn.execute(query, content, embedding, metadata)

Implement vector similarity search using AI principles and best practices with cosine distance:

async def find_similar(conn: asyncpg.Connection, query_embedding: list[float],
                      limit: int = 5) -> list[dict]:
    query = """
    SELECT content, metadata,
           1 - (embedding <=> $1) as similarity
    FROM embeddings
    ORDER BY embedding <=> $1
    LIMIT $2
    """
    return await conn.fetch(query, query_embedding, limit)

Designing the Generation Component

The generation component of your RAG system needs effective language model selection and configuration. You can implement different models based on your specific needs:

from pydantic_ai import AIModel, ModelProvider

class GenerationConfig:
    def __init__(self):
        self.gpt4 = AIModel(
            provider=ModelProvider.OPENAI,
            model="gpt-4",
            temperature=0.7
        )
        self.claude = AIModel(
            provider=ModelProvider.ANTHROPIC,
            model="claude-2",
            temperature=0.3
        )

def create_system_prompt(context: list[str]) -> str:
    return f"""
    Answer based on the following context:
    {' '.join(context)}
    If you cannot answer from the context, state that clearly.
    """

async def generate_response(query: str, context: list[str],
                          model: AIModel) -> str:
    prompt = create_system_prompt(context)
    response = await model.generate(
        messages=[
            {"role": "system", "content": prompt},
            {"role": "user", "content": query}
        ]
    )
    return response.content

This structure allows quick model switching and maintains consistent output quality through standardized prompting and temperature control.

Combining Retrieval and Generation for RAG Functionality

Create an agent class that brings together retrieval and generation capabilities:

from pydantic_ai import Agent, tool
from typing import List, Dict

class RAGAgent(Agent):
    def __init__(self, retriever, generator):
        self.retriever = retriever
        self.generator = generator

    @tool
    async def search_knowledge_base(self, query: str) -> List[Dict]:
        embedding = await create_embedding(query)
        results = await self.retriever.find_similar(embedding)
        return results

    async def process_query(self, query: str) -> str:
        context = await self.search_knowledge_base(query)
        relevant_text = [doc["content"] for doc in context]

        response = await self.generator.generate_response(
            query=query,
            context=relevant_text
        )

        return self._format_response(response, context)

    def _format_response(self, response: str, sources: List[Dict]) -> str:
        return {
            "answer": response,
            "sources": [s["metadata"]["source"] for s in sources]
        }

This building intelligent AI agents implementation uses the @tool decorator for modular functionality and combines retrieved information with generation tasks. The agent handles both the retrieval logic and response generation in a structured workflow.

Incorporating Multiple LLMs for Diverse Capabilities

Create a model selection system that matches specific tasks with appropriate language models:

class ModelSelector:
    def __init__(self):
        self.models = {
            'general': AIModel(provider='openai', model='gpt-4'),
            'conversation': AIModel(provider='anthropic', model='claude-2'),
            'local': AIModel(provider='llama', model='llama-2-70b')
        }

    def select_model(self, task_type: str, privacy_required: bool) -> AIModel:
        if privacy_required:
            return self.models['local']

        model_map = {
            'qa': 'general',
            'chat': 'conversation',
            'analysis': 'general'
        }
        return self.models[model_map.get(task_type, 'general')]

Set up machine learning techniques using Pydantic AI's settings:

/

from pydantic_ai import AISettings

class ModelConfig(AISettings):
    def __init__(self, task_type: str):
        self.openai = {"temperature": 0.7, "max_tokens": 1000}
        self.claude = {"temperature": 0.3, "max_tokens": 1500}
        self.local = {"temperature": 0.5, "max_tokens": 800}
        self.task_type = task_type

This approach allows seamless switching between models while maintaining consistent interfaces and output quality.

Implementing Query Understanding and Decomposition

To process complex queries effectively, create a query analysis system that breaks down questions into manageable components:

class QueryDecomposer:
    def __init__(self, model: AIModel):
        self.model = model

    async def decompose_query(self, query: str) -> list[str]:
        decomposition_prompt = """
        Split this query into simple, atomic questions:
        Query: {query}
        Return only the sub-questions as a list.
        """
        result = await self.model.generate(decomposition_prompt)
        return self._parse_subqueries(result)

@tool
async def handle_specialized_query(query_type: str, content: str) -> dict:
    handlers = {
        'technical': TechnicalQueryTool(),
        'data': DataAnalysisTool(),
        'policy': PolicyQueryTool()
    }
    return await handlers[query_type].process(content)

Build an iterative refinement process to improve measurement of performance:

async def refine_query(initial_query: str, context: list[str]) -> str:
    clarification = await request_clarification(initial_query)
    refined_query = await apply_context(clarification, context)
    return refined_query

Creating a Knowledge Base Management System

Build an automated pipeline to continuously update your knowledge base as new information becomes available:

class KnowledgeManager:
    def __init__(self, db_connection):
        self.db = db_connection
        self.version_tracker = VersionControl()

    async def add_document(self, content: str, source_info: dict) -> None:
        metadata = {
            "source": source_info["name"],
            "category": self.classify_content(content),
            "version": self.version_tracker.get_current(),
            "timestamp": datetime.now().isoformat()
        }

        await self.db.store_document(content, metadata)
        await self.update_index()

class VersionControl:
    def track_changes(self, document_id: str, changes: dict) -> None:
        commit = {
            "id": str(uuid4()),
            "document_id": document_id,
            "changes": changes,
            "timestamp": datetime.now()
        }
        self.commit_log.append(commit)

Structure metadata for refine data processes and quick content retrieval:

def create_metadata_schema(document: dict) -> dict:
    return {
        "id": document["id"],
        "tags": extract_tags(document["content"]),
        "last_updated": document["timestamp"],
        "access_level": determine_access_level(document)
    }

Optimizing Retrieval Strategies

class HybridSearch:
    def __init__(self, vector_store, text_index):
        self.vector_store = vector_store
        self.text_index = text_index

    async def search(self, query: str, top_k: int = 10) -> list[dict]:
        vector_results = await self.vector_store.search(query, top_k)
        keyword_results = await self.text_index.search(query, top_k)

        return self._combine_results(vector_results, keyword_results)

    def _combine_results(self, vector_hits: list, keyword_hits: list) -> list:
        combined = {}
        for hit in vector_hits + keyword_hits:
            if hit['id'] not in combined:
                combined[hit['id']] = hit
            else:
                combined[hit['id']]['score'] += hit['score']

        return sorted(combined.values(), key=lambda x: x['score'], reverse=True)

Implement content re-ranking to improve healthcare outcomes:

class ResultReranker:
    def rerank(self, results: list[dict], query: str) -> list[dict]:
        scored_results = []
        for result in results:
            relevance_score = self._calculate_relevance(result, query)
            scored_results.append({**result, 'final_score': relevance_score})

        return sorted(scored_results, key=lambda x: x['final_score'], reverse=True)

Adjust chunk parameters based on content type:

def optimize_chunk_size(content_type: str) -> int:
    chunk_sizes = {
        'technical': 256,
        'narrative': 512,
        'code': 128
    }
    return chunk_sizes.get(content_type, 384)

Developing Result Synthesis Mechanisms

class ResultSynthesizer:
    def __init__(self, llm_model: AIModel):
        self.llm = llm_model

    async def combine_information(self, documents: list[dict]) -> str:
        organized_info = self._group_by_topic(documents)
        summary = await self._create_unified_summary(organized_info)
        return self._add_citations(summary, documents)

    def _group_by_topic(self, documents: list[dict]) -> dict:
        topics = {}
        for doc in documents:
            topic = self._extract_main_topic(doc['content'])
            if topic not in topics:
                topics[topic] = []
            topics[topic].append(doc)
        return topics

    async def _create_unified_summary(self, grouped_info: dict) -> str:
        summaries = []
        for topic, docs in grouped_info.items():
            topic_summary = await self.llm.summarize(
                [d['content'] for d in docs],
                max_length=200
            )
            summaries.append(topic_summary)
        return ' '.join(summaries)

    def _add_citations(self, text: str, source_docs: list[dict]) -> str:
        cited_text = text
        for idx, doc in enumerate(source_docs):
            citation = f"[{idx + 1}]"
            cited_text += f"\\n{citation} {doc['metadata']['source']}"
        return cited_text

This implementation creates structured, verifiable outputs by combining retrieved information with proper source attribution. The system processes multiple documents, groups related information, and generates cohesive responses that maintain accuracy through source tracking.

Implementing Continuous Learning Capabilities

Create a feedback collection system to capture and analyze user interactions:

class FeedbackSystem:
    def __init__(self, db_connection):
        self.db = db_connection

    async def record_interaction(self, query: str, response: str,
                               user_rating: int) -> None:
        await self.db.store_feedback({
            "query": query,
            "response": response,
            "rating": user_rating,
            "timestamp": datetime.now()
        })

    async def analyze_patterns(self) -> dict:
        low_rated = await self.db.get_low_rated_responses()
        return self._identify_improvement_areas(low_rated)

class KnowledgeUpdater:
    async def fill_knowledge_gaps(self, failed_queries: list[dict]) -> None:
        for query in failed_queries:
            new_content = await self._search_additional_sources(query)
            if new_content:
                await self.knowledge_base.add_document(new_content)

    async def learn_from_failures(self) -> None:
        failed = await self.feedback_system.get_failed_responses()
        patterns = self._extract_failure_patterns(failed)
        await self._update_retrieval_strategy(patterns)

This system builds a self-improving knowledge base that adapts to user needs and fills information gaps automatically.

Building the Agent Layer with Specialized AI Agents

class AgentFactory:
    def create_specialized_agent(self, domain: str) -> BaseAgent:
        agent_types = {
            'hr': HRPolicyAgent(),
            'support': CustomerSupportAgent(),
            'technical': TechnicalDocsAgent()
        }
        return agent_types.get(domain, GeneralAgent())

class AgentOrchestrator:
    def __init__(self, agents: dict):
        self.agents = agents

    async def route_query(self, query: str) -> str:
        domain = self.classify_query_domain(query)
        agent = self.agents[domain]
        return await agent.process(query)

    def classify_query_domain(self, query: str) -> str:
        patterns = {
            'hr': ['policy', 'benefits', 'leave'],
            'support': ['help', 'issue', 'problem'],
            'technical': ['code', 'api', 'integration']
        }
        for domain, keywords in patterns.items():
            if any(word in query.lower() for word in keywords):
                return domain
        return 'general'

Each agent handles specific tasks while sharing core RAG capabilities. The orchestrator routes queries based on content analysis, allowing agents to work together on complex requests. This architecture supports using data and AI across multiple knowledge domains while maintaining consistency in responses.

Creating Task-Specific Agents for Different Domains

class HRPolicyAgent(BaseAgent):
    def __init__(self):
        self.knowledge_base = HRKnowledgeBase()
        self.policy_templates = {
            "leave": "Please explain the policy regarding {query_type}",
            "benefits": "What are the details of {query_type} benefits?",
            "compliance": "What are the guidelines for {query_type}?"
        }

    async def process_hr_query(self, query: str) -> dict:
        policy_type = self.classify_policy_query(query)
        context = await self.knowledge_base.fetch_policy_documents(policy_type)
        return await self.generate_policy_response(query, context)

class CustomerSupportAgent(BaseAgent):
    async def handle_support_ticket(self, query: str) -> dict:
        product_info = await self.knowledge_base.get_product_details(query)
        similar_cases = await self.find_similar_tickets(query)

        return {
            "solution": await self.generate_solution(query, product_info),
            "references": similar_cases,
            "confidence": self.calculate_confidence_score()
        }

class AnalyticsAgent(BaseAgent):
    async def interpret_data(self, dataset: str, question: str) -> dict:
        analysis = await self.analyze_dataset(dataset)
        interpretation = await self.generate_insights(analysis, question)
        return self.format_analytical_response(interpretation)

These agents process specific business tasks while maintaining data governance standards. HR agents handle policy inquiries with proper compliance checks, support agents reference past solutions, and analytics agents interpret business data with statistical context.

Developing a Multi-Agent System for Collaborative Work

class AgentCommunicationProtocol:
    def __init__(self):
        self.message_queue = asyncio.Queue()
        self.shared_memory = SharedMemoryStore()

    async def send_message(self, sender: str, receiver: str,
                          message: dict) -> None:
        await self.message_queue.put({
            'sender': sender,
            'receiver': receiver,
            'content': message,
            'timestamp': time.time()
        })

class SharedMemoryStore:
    def __init__(self):
        self.memory = {}
        self._lock = asyncio.Lock()

    async def store(self, key: str, value: any) -> None:
        async with self._lock:
            self.memory[key] = value

class ParallelQueryProcessor:
    def __init__(self, agents: dict):
        self.agents = agents

    async def process_complex_query(self, query: str) -> dict:
        tasks = [
            agent.process_subtask(query)
            for agent in self.get_relevant_agents(query)
        ]
        results = await asyncio.gather(*tasks)
        return self.merge_results(results)

This system creates connections between agents through structured messaging and shared data access. The parallel processor handles multiple aspects of queries simultaneously, while maintaining data consistency through locked memory access.

Implementing the Final Generation Model

class IntegratedRAGSystem:
    def __init__(self, retriever, generator, context_manager):
        self.retriever = retriever
        self.generator = generator
        self.context = context_manager
        self.conversation_history = []

    async def process_request(self, query: str, user_context: dict) -> dict:
        retrieved_docs = await self.retriever.search(query)
        formatted_context = self.context.build(
            documents=retrieved_docs,
            user_info=user_context
        )

        response = await self.generator.create_response(
            query=query,
            context=formatted_context,
            history=self.conversation_history
        )

        self.conversation_history.append({
            'query': query,
            'response': response,
            'timestamp': datetime.now()
        })

        return {
            'answer': response['content'],
            'confidence': response['confidence'],
            'sources': self._format_sources(retrieved_docs),
            'follow_up': self._suggest_related_questions(query)
        }

The system improves business intelligence through ongoing conversations by maintaining context through the conversation history. It refines outputs based on user-specific information and past interactions while tracking information sources for verification.

Creating an Iterative Refinement Process for Generated Responses

class ResponseRefiner:
    def __init__(self, model: AIModel, feedback_db: Database):
        self.model = model
        self.feedback_db = feedback_db

    async def review_response(self, response: str, context: list[str]) -> str:
        quality_check = await self._analyze_quality(response)
        if quality_check.score < 0.8:
            return await self._improve_response(response, context)
        return response

    async def collect_feedback(self, response_id: str, user_rating: int,
                             comments: str) -> None:
        await self.feedback_db.store({
            'response_id': response_id,
            'rating': user_rating,
            'comments': comments,
            'timestamp': datetime.now()
        })

class QualityTester:
    def run_ab_tests(self, prompt_variants: list[str]) -> dict:
        results = {}
        for variant in prompt_variants:
            responses = self._generate_test_responses(variant)
            results[variant] = self._score_responses(responses)
        return results

The system tracks response performance through user feedback and automatic quality checks. It refines data processes based on historical data and testing results. When responses need improvement, the refiner requests additional context or rephrases outputs for clarity.

Deploying the RAG Agent Locally

Set up your local environment by installing system requirements and dependencies in an isolated Python virtual environment:

class LocalDeployment:
    def __init__(self, config_path: str):
        self.cache = LocalCache()
        self.index_manager = VectorIndexManager()

    async def initialize(self):
        await self.cache.setup()
        await self.index_manager.build_indexes()

class FastAPIWrapper:
    def __init__(self, rag_agent: RAGAgent):
        self.app = FastAPI()
        self.agent = rag_agent

        @self.app.post("/query")
        async def process_query(request: QueryRequest):
            return await self.agent.process_query(request.query)

def configure_caching():
    return {
        "vector_cache": {
            "max_size": 1000,
            "ttl_seconds": 3600
        },
        "response_cache": {
            "max_size": 500,
            "ttl_seconds": 1800
        }
    }

Add setting up React Native monitoring and resource management:

class ResourceMonitor:
    def track_usage(self):
        return {
            "memory": psutil.virtual_memory().percent,
            "cpu": psutil.cpu_percent(),
            "storage": psutil.disk_usage('/').percent
        }

Testing and Evaluating the RAG Agent's Performance

class PerformanceEvaluator:
    def __init__(self):
        self.metrics = {
            "accuracy": AccuracyCalculator(),
            "latency": LatencyTracker(),
            "relevance": RelevanceScorer()
        }

    async def run_test_suite(self, test_cases: list[dict]) -> dict:
        results = []
        for case in test_cases:
            response = await self.agent.process_query(case["query"])
            results.append({
                "accuracy": self.check_accuracy(response, case["expected"]),
                "response_time": self.measure_latency(response),
                "hallucination_score": self.detect_hallucinations(response)
            })
        return self.aggregate_results(results)

class StressTestRunner:
    async def load_test(self, concurrent_users: int, duration: int) -> dict:
        start_time = time.time()
        tasks = []
        while time.time() - start_time < duration:
            tasks.extend([
                self.simulate_user_query()
                for _ in range(concurrent_users)
            ])
        results = await asyncio.gather(*tasks)
        return self.analyze_performance(results)

class AutomatedTestSuite:
    def __init__(self):
        self.test_cases = TestCaseManager()
        self.pytest_config = {
            "async_mode": "asyncio",
            "timeout": 30
        }

    async def run_integration_tests(self) -> TestReport:
        return await pytest.asyncio.run(
            self.execute_test_battery(),
            **self.pytest_config
        )

The system measures response accuracy, processing speed, and resource usage through automated test suites. It identifies potential bottlenecks and optimizes performance based on data processes before integrating AI. The testing framework supports continuous integration pipelines and maintains quality standards across updates.

Troubleshooting Common Issues

When database connections fail, check your connection strings and network settings:

async def verify_db_connection(conn_string: str) -> bool:
    try:
        conn = await asyncpg.connect(conn_string)
        await conn.close()
        return True
    except Exception as e:
        return {"error": str(e), "fix": "Check credentials and network"}

def diagnose_api_errors(error_code: int) -> dict:
    solutions = {
        401: "Verify API key in environment variables",
        429: "Implement rate limiting and backoff",
        503: "Check service status and retry with exponential backoff"
    }
    return {"code": error_code, "solution": solutions.get(error_code)}

For vector search issues, validate index integrity:

class SearchDebugger:
    async def check_indices(self) -> dict:
        query = "SELECT COUNT(*) FROM embeddings WHERE embedding IS NULL"
        missing = await self.db.fetch_val(query)
        return {"missing_vectors": missing, "action": "Regenerate embeddings"}

def optimize_llm_responses(response_data: dict) -> dict:
    if response_data['confidence'] < 0.8:
        return {
            "action": "Adjust temperature setting",
            "current": response_data['temperature'],
            "suggested": response_data['temperature'] - 0.1
        }

Best Practices for Maintaining and Updating the RAG Agent

Set up semantic versioning for agent components:

class VersionManager:
    def __init__(self):
        self.version_info = {
            'major': 1,
            'minor': 0,
            'patch': 0
        }

    def update_version(self, update_type: str) -> str:
        if update_type == 'major':
            self.version_info['major'] += 1
            self.version_info['minor'] = 0
            self.version_info['patch'] = 0
        elif update_type == 'minor':
            self.version_info['minor'] += 1
            self.version_info['patch'] = 0
        else:
            self.version_info['patch'] += 1

        return f"v{self.version_info['major']}.{self.version_info['minor']}.{self.version_info['patch']}"

Handle API keys securely through effective data management:

class SecretManager:
    def __init__(self):
        self.vault = VaultClient()

    async def rotate_keys(self, key_name: str) -> None:
        new_key = await self.vault.generate_key()
        await self.vault.store_key(key_name, new_key)

Schedule regular updates:

class MaintenanceScheduler:
    async def refresh_knowledge_base(self) -> None:
        outdated = await self.find_outdated_content()
        for content in outdated:
            await self.update_content(content)

    async def retrain_models(self) -> None:
        await self.update_embeddings()
        await self.fine_tune_models()

Scaling the RAG Agent for Business Use

Structure your RAG system for enterprise deployment using microservices:

class ServiceRegistry:
    def __init__(self):
        self.services = {
            'retrieval': RetrievalService(),
            'generation': GenerationService(),
            'orchestration': OrchestratorService()
        }

    async def deploy_service(self, service_name: str, config: dict) -> None:
        container = await self.create_container(service_name, config)
        await self.kubernetes_client.deploy(container)

class CloudDeployment:
    async def configure_autoscaling(self) -> dict:
        return {
            "min_replicas": 3,
            "max_replicas": 10,
            "target_cpu_utilization": 70
        }

class IntegrationManager:
    def __init__(self):
        self.connectors = {
            'slack': SlackConnector(),
            'teams': TeamsConnector(),
            'salesforce': SalesforceConnector()
        }

    async def register_webhook(self, platform: str, endpoint: str) -> str:
        connector = self.connectors[platform]
        return await connector.setup_webhook(endpoint)

The system supports integrated multiple knowledge sources through container orchestration while maintaining connection points with business platforms through standardized APIs and webhooks.

Conclusion

Building a RAG knowledge base agent with Pydantic AI transforms how organizations handle information retrieval and response generation. The combination of structured data management, flexible model integration, and robust testing frameworks creates a foundation for reliable AI systems that actually deliver on their promises.

Ready to implement your own RAG agent? Start with the basic structure and gradually add capabilities as your needs grow. Remember that successful implementation isn't just about the code – it's about creating a system that consistently delivers accurate, relevant responses while adapting to your organization's evolving requirements.

Transforming raw data into
actionable insights

We help businesses boost revenue, save time, and make smarter decisions with Data and AI